The modulation of oxygen radical production by nitric oxide in mitochondria.
نویسندگان
چکیده
Biological systems that produce or are exposed to nitric oxide (NO radical) exhibit changes in the rate of oxygen free radical production. Considering that mitochondria are the main intracellular source of oxygen radicals, and based on the recently documented production of NO(radical) by intact mitochondria, we investigated whether NO(radical), produced by the mitochondrial nitric-oxide synthase, could affect the generation of oxygen radicals. Toward this end, changes in H(2)O(2) production by rat liver mitochondria were monitored at different rates of endogenous NO(radical) production. The observed changes in H(2)O(2) production indicated that NO(radical) affected the rate of oxygen radical production by modulating the rate of O(2) consumption at the cytochrome oxidase level. This mechanism was supported by these three experimental proofs: 1) the reciprocal correlation between H(2)O(2) production and respiratory rates under different conditions of NO(radical) production; 2) the pattern of oxidized/reduced carriers in the presence of NO(radical), which pointed to cytochrome oxidase as the crossover point; and 3) the reversibility of these effects, evidenced in the presence of oxymyoglobin, which excluded a significant role for other NO(radical)-derived species such as peroxynitrite. Other sources of H(2)O(2) investigated, such as the aerobic formation of nitrosoglutathione and the GSH-mediated decay of nitrosoglutathione, were found quantitatively negligible compared with the total rate of H(2)O(2) production.
منابع مشابه
Reactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation: modulation by nitric oxide.
Mitochondria are an important source of reactive oxygen species (ROS), implicated in ischemia/reperfusion injury. When isolated from ischemic myocardium, mitochondria demonstrate increased ROS production as a result of damage to electron transport complexes. To investigate the mechanisms, we studied effects of hypoxia/reoxygenation on ROS production by isolated energized heart mitochondria. ROS...
متن کاملآنتیاکسیدانها و برخی از روشهای متداول اندازه گیری آنها، مقاله مروری
The pathology of numerous chronic diseases, such as cardiovascular dysfunctions, atherosclerosis, inflammation, carcinogenesis, drug toxicity, diabetes mellitus, aging and neurodegenerative involves oxidative damage to cellular components. When body cells use oxygen to generate energy, free radicals are created as a consequence of adenosine triphosphate (ATP) production by the mitochondria whic...
متن کاملMitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate.
Increasing evidence suggests that glutamate neurotoxicity is partly mediated by reactive oxygen species, formed as a consequence of several processes, including arachidonic acid metabolism and nitric oxide production. Here we used an oxidation-sensitive indicator, dihydrorhodamine 123, in combination with confocal microscopy, to examine the hypothesis that electron transport by neuronal mitocho...
متن کاملDetermination of Optimum Conditions for the Production of Peptides with Antioxidant and Nitric-Oxide Inhibition Properties from Protein Hydrolysis of Pumpkin Seed Meals Using Pepsin Enzyme
Background and Objectives: In this study, hydrolysis condition optimization of the pumpkin (Cucurbita pepo) seed proteins was carried out achieve maximum DPPH radical scavenging and nitric-oxide inhibition properties using Design Expert Software and response surface methodology. Materials & Methods: In general, 1–3% concentrations of pepsin enzyme, 30–40 °C temperature and 120–100 min time we...
متن کاملThe biological significance of mtNOS modulation.
In the last years, nitric oxide synthases (NOS) have been localized in mitochondria. At this site, NO yield directly regulates the activity of cytochrome oxidase, O(2) uptake and the production of reactive oxygen species. Recent studies showed that translocated neuronal nitric oxide synthase (nNOS) is posttranslationally modified including phosphorylation at Ser 1412 (in mice) and myristoylatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 276 10 شماره
صفحات -
تاریخ انتشار 2001